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We use the synthetic control method to analyze the effect of face
masks on the spread of COVID-19 in Germany. Our identification
approach exploits regional variation in the point in time when
wearing of face masks became mandatory in public transport
and shops. Depending on the region we consider, we find that
face masks reduced the number of newly registered severe acute
respiratory syndrome coronavirus 2 infections between 15% and
75% over a period of 20 days after their mandatory introduction.
Assessing the credibility of the various estimates, we conclude that
face masks reduce the daily growth rate of reported infections by
around 47%.
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Many countries have experimented with several public health
measures to mitigate the spread of COVID-19. One par-

ticular measure that has been introduced are face masks. It is of
obvious interest to understand the contribution made by such a
measure in reducing infections.
The effect of face masks on the spread of infections has been

studied for a long time. The usefulness of facial protection for
clinical personnel is beyond dispute, even though there are many
questions left open (1). There is also evidence that face masks
helped in mitigating the spread of earlier epidemics such as SARS
2003 (severe acute respiratory syndrome 2003) or influenza (see SI
Appendix, section E for a brief literature survey). The impact of
face masks worn in public on the spread of COVID-19 has yet to
be systematically analyzed. This is the objective of this paper.
There is a general perception in Germany that the mandatory

use of face masks in public reduces COVID-19 incidences con-
siderably. This perception stems mainly from the city of Jena.
After face masks became mandatory between 1 April and 10 April
2020 the number of new infections fell almost to zero. Jena is not
the only region in Germany, however, that introduced face masks.
Six further regions made masks compulsory before the introduc-
tion at the federal state level. Eventually, face masks became
mandatory in all federal states between 20 April and 29 April 2020
(see SI Appendix, section A for background).
We quantify the effectiveness of face masks by employing the

synthetic control method (SCM; refs. 2–5). Our identification
approach exploits this regional variation in the point in time when
face masks became mandatory. We use data for 401 regions in
Germany (municipal districts) to estimate the effect of this par-
ticular policy intervention on the development of registered in-
fections with COVID-19. We consider the timing of mandatory
face covering as an exogenous event to the local population:
Masks were imposed by local authorities and were not the out-
come of some process in which the population was involved. We
compare the COVID-19 development in various regions to their
synthetic counterparts. The latter are constructed as weighted
averages of control regions that are structurally similar to treated
regions. Structural dimensions considered include prior COVID-
19 cases, the demographic composition, and the local health care
system.

A detailed analysis of the timing of all public health measures
in the regions we study guarantees that we correctly attribute our
findings to face masks (and not erroneously to other public health
measures). We also employ a standard SIR (susceptible–infected–
removed) model and undertake an analysis of the distribution of
the lag between infection and reporting date. This allows us to
provide a precise interpretation of our empirical effectiveness
measure and to pin down the point in time when the effects of face
masks should be visible in the data.
We find statistically significant and sizeable support for the

general perception that the public wearing of face masks in Jena
strongly reduced the number of incidences. We obtain a synthetic
control group that closely follows the COVID-19 trend before the
introduction of mandatory masks in Jena. The difference between
Jena and this group becomes significant thereafter. Our findings
indicate that the early introduction of face masks in Jena has
resulted in a drop in newly registered COVID-19 cases of around
75% after 20 d. Put simply, if the control region observes 100 new
infections over a period of 20 d, the mask region observes only 25
cases. This drop is greatest, by more than 90%, for the age group
60 y and above. Our results are robust to different sensitivity
checks, among which are placebo-in-space and placebo-in-time
analyses.
As a means to verify the generalizability of our findings for

Jena, we move from a single- to a multiple-treatment approach
and estimate average treatment effects of introducing face masks

Significance

Mitigating the spread of COVID-19 is the objective of most
governments. It is of utmost importance to understand how
effective various public health measures are. We study the
effectiveness of face masks. We employ public regional data
about reported severe acute respiratory syndrome coronavirus
2 infections for Germany. As face masks became mandatory at
different points in time across German regions, we can com-
pare the rise in infections in regions with masks and regions
without masks. Weighing various estimates, we conclude that
20 d after becoming mandatory face masks have reduced the
number of new infections by around 45%. As economic costs
are close to zero compared to other public health measures,
masks seem to be a cost-effective means to combat COVID-19.

Author contributions: T.M., R.K., J.R., and K.W. designed research, performed research,
contributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1T.M., R.K., J.R., and K.W. contributed equally to this work.
2To whom correspondence may be addressed. Email: waelde@uni-mainz.de.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2015954117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2015954117 PNAS Latest Articles | 1 of 9

ST
A
TI
ST

IC
S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

D
ec

em
be

r 
4,

 2
02

0 

https://orcid.org/0000-0003-3799-5200
https://orcid.org/0000-0002-8815-6039
https://orcid.org/0000-0002-3134-0759
https://orcid.org/0000-0001-5717-0383
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015954117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015954117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015954117/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2015954117&domain=pdf&date_stamp=2020-12-03
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:waelde@uni-mainz.de
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015954117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015954117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2015954117


www.manaraa.com

on the spread of COVID-19 for all regions that introduced
masks by 22 April (∼8% of all German regions). Although the
estimated average treatment effect is smaller compared to the
one found for Jena, it is still statistically significant and suffi-
ciently large to support our point that wearing face masks is an
effective and cost-efficient measure for fighting COVID-19.
When we summarize all of our findings in one single measure (SI
Appendix, section D.2), we conclude that the daily growth rate of
COVID-19 cases in the treatment group falls by around 47% due
to mandatory mask-wearing relative to the synthetic control
group.*
Our findings can be aligned with earlier evidence on face

masks, public health measures, and the epidemic spread of
COVID-19, although consolidated scientific knowledge is lim-
ited (SI Appendix, section E). While there is a growing consensus
from clinical studies that face masks significantly reduce the
transmission risk of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) and COVID-19 (7, 10), nonclinical evi-
dence on the effectiveness of face masks is still largely missing.
Ref. 11 surveys evidence on the population impacts of a wide-
spread community mask use and stresses that “no randomized
control trials on the use of masks . . . has been published.” The
study which is “the most relevant paper” for ref. 11 is one that
analyzed “exhaled breath and coughs of children and adults with
acute respiratory illness” (ref. 12, p. 676), that is, used a clinical
setting. Concerning the effect of masks on community trans-
missions, the survey needs to rely on pre–COVID-19 studies.
Ref. 13 is among the first to estimate the population impact of

face masks on SARS-CoV-2 infections.† The authors track the
development of COVID-19 in three pandemic epicenters,
Wuhan, Italy, and New York City, between 23 January and 9
May 2020 and find sizable mitigating effects of face masks on
epidemic spread. While their study offers important insights into

the population effects of face masks, a methodical limitation is
that estimates are only carried out in a “before–after” manner
with no use of a strict control group approach. This may limit the
causal interpretation of results. We therefore follow the spirit of
ref. 4 and provide causal evidence identifying the population
impact of mandatory face masks on the spread of COVID-19.

Results: The Effects of Face Masks on the Spread of COVID-19
All results are obtained by applying the synthetic control
method. It is described briefly in Method and Data and in more
detail in SI Appendix, section B.

Results for Jena. Face masks became mandatory in Jena in three
steps between 1 and 10 April. The most important measure (in
the sense of having the largest impact measured in terms of social
contacts) requires face masks in public transports and shops and
entered into force on 6 April (see SI Appendix, section A for detailed
information). We therefore center our discussion on this date.
Fig. 1A shows the SCM results for the introduction of face

masks in Jena on 6 April. The visual inspection of the develop-
ment of cumulative COVID-19 cases shows that the trend de-
velopment of the synthetic control group is very similar to Jena
before the treatment, indicating a good fit.‡ The difference in the
cumulated registered COVID-19 cases between Jena and its cor-
responding synthetic control group after the start of the treatment
on 6 April can be interpreted as the treatment effect on the treated
[see SI Appendix, section C.3 for (post)estimation details].
Fig. 1A clearly shows a gradually widening gap in the cumu-

lative number of COVID-19 cases between Jena and its synthetic
control group. The size of the effect 20 d after the start of the
treatment (6 April) amounts to a decrease in the number of
cumulative COVID-19 cases of 23%, which corresponds to a
drop in newly registered cases of roughly 75%. Expressed dif-
ferently, the daily growth rate of the number of infections de-
creases by 1.28 percentage points per day (see SI Appendix,
section D.2 for computational details and an overview of all
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Fig. 1. Treatment effects of the mandatory introduction of face masks (6 April) and of its announcement (30 March) in Jena. The figure shows the de-
velopment of the cumulative number of COVID-19 cases in Jena (treated region, black solid line) compared to a synthetic control group (gray dashed line)
over time. (Details on the construction of the synthetic control group and SCM estimation are given in Method and Data.) Both panels distinguish between a
pretreatment and treatment period. In A, the treatment period starts on 6 April when face masks became mandatory in public transport and shops. The start
of the treatment period is indicated by the dashed vertical line (red). In B, the treatment period is set to begin on 30 March as starting date of the local
campaign in Jena to wear face masks in public. The start of the treatment period is indicated by the dashed vertical line (blue). The panels show that the
conclusion is independent of the starting dates: Face masks strongly reduced the number of COVID-19 cases in Jena.

*The main channel through which masks reduce transmission of SARS-CoV-2 is the limit-
ing effect for the spread of exhaled air, as argued by ref. 6. Refs. 6 and 7 argue that
aerosols (as opposed to larger droplets) are filtered only by high-quality masks. Droplets
are also filtered by home-made masks. Earlier work includes ref. 8 that was recently
extended by ref. 9. Ref. 9 finds that all face covers (without an outlet valve) “reduce the
front flow through jet by more than 90%.” As surgical and hand-made masks generally
do not tightly fit, they generate backward and downward jets.

†Ref. 10 conducts a systematic review and meta-analysis. They do not report a study (see
their table 1) that analyzes the entire population of a country.

‡As a measure for the quality of the fit between the treated region and its synthetic
control group, the pretreatment root-mean-square prediction error (RMSPE) can be cal-
culated and compared to a reference case. For Jena the pretreatment RMSPE is 3.145.
This is considerably lower than an average RMSPE of 6.669 for all other 400 regions and
their synthetic controls in the pretreatment period until 6 April. This points to the rela-
tively good fit of the synthetic control group for Jena in this period.
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measures). If we look at the estimated differences by age groups,
SI Appendix, Fig. S7 indicates that the largest effects occur for
individuals above 60 y of age. Here the reduction in cumulative
cases even exceeds 50%, which corresponds to a drop in newly
registered SARS-CoV-2 infections by more than 90%. The sig-
nificant drop can be explained by the introduction of face masks
in elderly and nursing homes, which had already started on 1
April. For the other two age groups the decrease in the number
of cumulative cases lies between 10% and 20%.
If we consider a median time lag of 10.5 d from infection until

registration (see SI Appendix, section A.3), the occurrence of a
gradually widening gap between Jena and its synthetic control in
the first week after the introduction of mandatory face masks
seems fast. One might conjecture that an announcement effect
played a role. As shown in SI Appendix, section C.6.1, online
searches for (purchasing) face masks peaked on 22 April, when it
was announced that face masks would become compulsory in all
German federal states.§ Another peak in online searches, almost
as large (70% of the peak of 22 April), appeared on 31 March.
This marks the date of the regulation making masks compulsory
between 1 and 10 April in Jena. The regulation was accompanied
by a campaign “Jena zeigt Maske,” communicating the necessity
to wear face masks in public, that started on 30 March.#

Fig. 1B plots the estimated effect size when we define the start
of the treatment period by the start of the campaign on 30
March. The visual inspection of the difference between Jena and
its synthetic control group points to the presence of a small an-
ticipation effect. Yet, the gap to the synthetic control signifi-
cantly widens only ∼10 to 12 d after the announcement and then
grows considerably over time. As this temporal transmission
channel appears plausible given a median time lag between in-
fection and registration of almost equal length, we take this as
first evidence for a face mask effect in the reduction of
SARS-CoV-2 infections.

Robustness Checks. Obviously, the estimated difference in
COVID-19 development in Jena vis-à-vis the synthetic Jena is only
convincing if 1) the requirements of the SCM are fulfilled and 2)
potentially concurrent policies other than masks can be ruled out.
The role of the first set of robustness checks consists of under-
standing the sensitivity to the length of the preintervention period
(Cross-Validation Tests) and to the composition of the control pool
(Changing the Donor Pool).ǁ In a second step, we rule out unob-
served macro effects shared by many regions (Placebo-in-Space
Tests) and test for anticipation effects potentially caused by
other public health measures (Placebo-in-Time Tests). The second
step also comprises difference-in-difference estimation as a fur-
ther test for latent concurrent policies that go beyond observable
policies (displayed in SI Appendix, Fig. S2).
Cross-validation tests.We study the sensitivity of our estimates with
respect to the length of the training and validation period before
the start of the treatment. We accordingly alter the imposed lag
structure for predictors that have a time dimension, that is, the
number of cumulative and newly registered COVID-19 cases.
The set of time-constant predictors is kept unchanged by this
test. As shown in SI Appendix, section C.7, we do not find a
systematic estimation bias of our baseline SCM specification
compared to alternative ones with longer lag structures (up to 7
d) and accordingly shorter trainings periods. Given that regional
COVID-19 cases developed very dynamically and nonlinearly in
the pretreatment period, this is an important finding in terms of
the robustness of our results.

We also test for the sensitivity of the estimated treatment ef-
fects to changes in the set of time-constant predictors. We do so
by sequentially excluding individual variables from the set of
predictors. As shown in SI Appendix, section C.7, the estimated
trajectories for the respective synthetic control groups follow a
very similar trend. All of them identify a reduction in the number
of cumulative COVID-19 cases in Jena vis-à-vis the synthetic
Jena that widens over time. We conclude from these results that
using the full set of predictors is the most reasonable approach.
Changing the donor pool. This may be equally important as our
baseline specification includes the region of Heinsberg in the
donor pool used to construct the synthetic Jena (with a weight of
4.6%; compare SI Appendix, Table S5). As Heinsberg is one of
the German regions that was significantly affected by the
COVID-19 pandemic during the Carnival season, one may ex-
pect that this leads to an overestimation of the effects of face
masks. Accordingly, SI Appendix, section C.8 presents estimates
for alternative donor pools. Again, we do not find evidence for a
significant bias in our baseline specification. By tendency, the
treatment effect becomes larger, particularly if we compare Jena
only to other regions in Thuringia (to rule out macroregional
trends) and to a subsample of larger cities (kreisfreie Städte). The
latter comparison reduces the degree of latent regional hetero-
geneity, for instance, with regard to social interactions. Both
subsamples exclude Heinsberg. We also run SCM for subsamples
excluding Thuringia (to rule out spatial spillover effects) and for
East and West German regions only (again to test for specific
macro regional trends). Generally, these sensitivity tests under-
line the robustness of the estimated treatment effect for Jena.
Placebo-in-space tests. These tests check whether other cities that
did not introduce face masks on 6 April have nonetheless ex-
perienced a similar decline in the number of registered COVID-
19 cases. If this had been the case, the treatment effect might
have been driven by other latent factors rather than by face masks.
Such latent factors may, for instance, be related to the macrore-
gional dynamics of COVID-19 in Germany. Therefore, SI Appen-
dix, section C.9 reports pseudo-treatment effects for similarly sized
cities in the federal state of Thuringia assuming that they had in-
troduced face masks on 6 April—although, in fact, they did not. As
the figure illustrates, these cities show either a significantly higher
or a similar development of registered COVID-19 cases compared
to their synthetic controls. This result provides further empirical
support for a relevant effect in the case of Jena.
As a more comprehensive test, we run placebo-in-space tests

for all other regions that did not introduce face masks on 6 April
or closely afterward. Again, we estimate the same model on each
untreated region, assuming it was treated at the same time as
Jena. The empirical results in Fig. 2 indicate that the reduction in the
reported number of COVID-19 cases in Jena clearly exceeds the
trend in most other regions—both for the overall sample in Fig. 2A
and the subsample of large cities (kreisfreie Städte) in Fig. 2B.
One advantage of these tests is that they allow us to conduct

inference on the significance of the estimated treatment effects
for Jena. Accordingly, Fig. 2 C and D visualize the estimated
treatment effects together with 90% confidence intervals. In-
tervals have been calculated on the basis of (one-sided) P values
(pretreatment match quality adjusted) reported in Fig. 2 E and
F.** The latter indicate the probability that the reduction in the
number of COVID-19 cases was observed by chance given the
distribution of pseudo-treatment effects in the other German
regions (see ref. 18). In both panels, the reported confidence
intervals and underlying P values indicate that the reduction in

§For a German-wide news report see, for example, ref. 14.
#See local newspaper reports, for instance ref. 15.
ǁFurther requirements, that are less central to our application, are listed in Method and
Data and are discussed in SI Appendix, section B.

**We follow the method proposed in ref. 16 to calculate confidence intervals from
P values. As pointed out in ref. 17, the interpretation of confidence intervals and P
values is restricted to the question of whether or not the estimated effect of the actual
treatment is large relative to the distribution of placebo effects.
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the number of COVID-19 cases was not a random event. In
larger cities (Fig. 2D), the reduction due to the introduction of
face masks is clearly visible 2 wk after the start of the treatment.
Again, this timing is in line with our above argument that a
sufficiently long incubation time and testing lags need to be
considered in the evaluation of treatment effects.††

Placebo-in-time tests. As for the case of placebo-in-space tests, it is
important for the validity of results that we do not observe sig-
nificant treatment effects for Jena prior to the introduction of
face masks on 6 April or its announcement on 30 March. To rule
out such anticipation effects, we have systematically reviewed all
general decrees published by the local administration in Jena. Of
particular interest are those decrees that significantly differ with
respect to their timing from those at the federal state level in
Thuringia.
Looking at SI Appendix, Fig. S2, Jena and Thuringia passed at

least 40 public health measures before the end of April 2020. Jena
implemented 27 of these 40 either earlier than Thuringia or on its
own. Examples of earlier implementation include the closing of
bars, cafés, and restaurants or quarantine rules for travelers
returning home. Relevant regions included foreign countries but
also other German federal states, among which were Bavaria,
Baden-Wurttemberg, and North-Rhine Westphalia. Measures
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Fig. 2. Comprehensive placebo-in-space tests for the effect of face masks on COVID-19 cases. The figure compares the difference in the cumulative number
of COVID‐19 cases between Jena and its synthetic control group with the differences between all other regions in the donor pool and their respective controls
over time. Differences have been calculated for the treatment period after 6 April when Jena de facto introduced mandatory face masks. For all other regions,
the reported differences in the treatment period constitute pseudo‐treatment effects since these regions had not introduced face masks back then. In A, the black
solid line measures the treatment effect for Jena. The solid gray lines measure the pseudo‐treatment effects for all other German regions in the donor pool (see
Method and Data for details on the specification of the donor pool). Plots are shown for donor regions with an acceptable pretreatment root-mean-square
prediction error (RMSPE), that is, less than 10 times the RMSPE of Jena; dotted lines indicate the median (p50), 25th percentile (p25), and 75th percentile (p75) of
pseudo-treatment effects. In B, the donor pool is reduced to comprise only larger cities (kreisfreie Städte). C and D also plot the treatment effect for Jena and 90%
confidence intervals (gray dashed lines) for the full sample of regions and the subsample of larger cities, respectively. Confidence intervals are constructed on the
basis of pseudo P values as shown in E and F for the first 20 d after the introduction of face masks in Jena. These P values are adjusted for the pretreatment match
quality (see Method and Data for details). The red horizontal line in E and F indicates a threshold P value of 0.1.

††We analyze a measure that is introduced for the first time in this region. One might
conjecture that our estimation measures both the true effect of a face mask but also
any other change in behavior (washing hands, limiting interactions, staying at home
more, etc.) that was triggered by this policy. This change in behavior is known as the
Hawthorn effect. Individuals in this pioneer region might take the crisis more seriously
than in the other areas. Although German health authorities had been strongly recom-
mending such behavioral changes in daily life since mid-March, we cannot fully rule out
this mixing of effects. Mobility data for federal states in SI Appendix, section C.6.2 show
that federal states moved in a relatively coordinated way in this respect. Unfortunately,
mobility data for Jena are not easily available.
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imposed by Jena only include the complete closing of hotels (in
contrast to closing of hotels for tourism only in Thuringia) and a
curfew (which lasted for only 2 wk, though).
As these major health decrees were accompanied by smaller ones

on an almost daily basis until 20 March, we run a series of SCM
estimations using each day between 14 and 20 March as a (pseudo)
treatment period.‡‡ The results for the full donor pool including all
other German regions and the subsample of larger cities are shown
in Fig. 3 A and B. Results are reported until 30 March when the
mandatory introduction of face masks was announced.
To take an example, consider the graph with the long dashes in

Fig. 3A denoted “Synth March 14.” It shows the cumulative
number of COVID-19 cases for a synthetic control group for
Jena extracted from the full donor pool under the assumption
that some treatment had started on 14 March. Similarly, “Synth
March 15” (and so on) show the evolution of COVID-19 cases
for a starting date of 15 March. Hence, each SCM estimation
starts at a different point in time.
The visual inspection of the relative development of COVID-19

cases in Jena vis-à-vis its synthetic Jena does not indicate a clear
treatment effect in terms of reducing COVID-19 cases prior to 1
April. The results are particularly clear-cut for the sample of larger
cities in Fig. 3B, indicating that earlier public health measures
alone did not significantly suppress the number of COVID-19
cases in Jena in the first 2 wk after their introduction.
Difference-in-difference tests. The reported trajectories of synthetic
Jena in Fig. 3A leave us with some degree of ambiguity, though.
To explicitly test for a potential trend reversal in the develop-
ment of COVID-19 cases prior to the introduction of face masks,
we further run an alternative robustness test on the basis of in-
cremental difference-in-difference (DiD) estimation. The DiD
estimator is particularly well-suited to estimate dynamic treat-
ment effects in the context of limited information about the exact
length of transmission lags before individual policy interventions
show measurable effects (a detailed description is given in SI
Appendix, section F). As the results clearly show, treatment ef-
fects from public health measures in Jena in terms of a reduction

in COVID-19 cases only become statistically significant roughly 2
wk after the introduction of face masks on 6 April. If we resort to
the estimated incubation and reporting lag as shown in SI Ap-
pendix, section A.3, this result supports our main SCM findings
that the relative reduction in the cumulative number of COVID-
19 cases is mainly attributable to the timing of introducing face
masks. The incremental DiD results also support our main SCM
findings in terms of the magnitude of the treatment effect.

Results for Other Regions. Jena may be a unique case. We therefore
also study treatment effects for other individual regions that intro-
duced face masks earlier than other regions. Further single-unit
treatment analyses are shown in SI Appendix, section D.1. SCM es-
timation for multiple treated units can be undertaken as not only did
some individual regions introduce face masks earlier than their
federal states (see Fig. 5, below the time line) but also some federal
states (Saxony and Saxony-Anhalt) before the remaining German
federal states (SI Appendix, Fig. S1). To ensure a sufficiently long
treatment period, we consider all regions as treated which introduced
face masks on or before 22 April. We estimate average treatment
effects in a multiple treatment SCM approach for 1) all of these
regions and 2) a subset consisting of larger cities (kreisfreie Städte)
only. In the former case we have a total of 32 treated units, and in the
latter there are 8 treated units. The donor pool of control regions (all
regions in Germany and only larger cities, respectively) is specified
such that the minimum time lag in the introduction of face masks
between treated and control regions ranges between 5 and 13 d.
The results, visible in Fig. 4, point to a significant face mask

effect in the reduction of SARS-CoV-2 infections over a period of
20 d after the introduction. The temporal evolution of the average
number of cumulative COVID-19 cases for treated regions and
their corresponding synthetic control groups are shown in Fig. 4 A
and B, respectively. The reported 90% confidence intervals in Fig.
4 C and D calculated on the basis of adjusted P values shown in
Fig. 4 E and F indicate that the estimated treatment effects are not
random for both samples. While treatment effects of face masks
turn significant after roughly 1 wk for the overall sample, the
emergence of a reduction in the subsample of larger cities is fast
and points to early anticipation effects of face masks in urban
areas, particularly during the period when local economies were
gradually reopened after 20 April.

0
50

10
0

C
um

ul
at

iv
e 

nu
m

be
r C

ov
id

-1
9 

ca
se

s

March 14 March 21 March 29March 7

Jena Synth March 14
Synth March 15 Synth March 16
Synth March 17 Synth March 18
Synth March 19 Synth March 20

--- Daily --- --- Daily ---

0
50

10
0

March 7 March 14 March 21 March 29

Jena Synth March 14
Synth March 15 Synth March 16
Synth March 17 Synth March 18
Synth March 19 Synth March 20

A B

Fig. 3. Placebo-in-time tests for (pseudo) treatment effects in the period 14 to 20 March. The figure shows the empirical development of the cumulative number of
COVID-19 cases in Jena (treated region, black solid line) and the estimated development in different synthetic control groups over time. The key difference between
these synthetic control groups lies in the starting point of the (pseudo) treatment period. The starting point varies on a daily basis between 14 and 20 March. In A, the
full sample of German regions is used as the donor pool for the construction of synthetic control groups (see Method and Data for details on the specification of the
donor pool). Vertical dashed lines (orange) indicate the time corridor in which the respective (pseudo) treatment periods start. In B, the donor pool is reduced to
comprise only larger cities (kreisfreie Städte). Again, vertical dashed lines (orange) indicate the time corridor in which the respective (pseudo) treatment periods start.

‡‡Alternatively, we have also tested for pseudo-treatment effects in Jena over a period of
20 d before the introduction of face masks. This period is equally split into a pre- and
pseudo posttreatment period. As SI Appendix, Fig. S11B shows, there is no strong de-
viation from the path of the synthetic control group.
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Importantly, however, the trend development for larger cities
as shown in Fig. 4 not only indicates a drop in the number of
newly registered COVID-19 cases around the immediate timing
of the introduction of face masks but also points to the presence
of dynamic treatment effects as the average gap between treated
regions and their synthetic control groups widens over time. This
hints at the role played by mandatory face masks in avoiding a
new wave of new infections once the economy and labor market
is reopened. As Fig. 4B highlights, such an avoidance effect may
be particularly important in larger cities with higher population
density and accordingly higher intensity of social interaction§§

Taken together, over a period of 20 d, we observe an average
reduction of 28.4 cases between treated and control regions in the
context of urban areas. Relative to the average number of cumulative
COVID-19 cases on 11 May in control regions (317.9), this amounts
to a reduction of 8.9% in the cumulative number of COVID-19 cases
and a reduction of 51.2% in newly registered cases. The difference in
the daily growth rate of the number of infections correspondingly
amounts to 0.46 percentage points. For the full sample, this differ-
ence is estimated to be 0.13 percentage points (see SI Appendix,
section D.2 for an overview of all measures andMethod and Data for
theoretical background). This smaller magnitude in the latter sample
including all municipal districts has to be evaluated against the
background of a considerable degree of structural heterogeneity, for
instance, related to the composition of the local population but also
the local COVID-19 spread. We argue that the latter should thus be
interpreted as a lower bound for the true treatment effects.

Discussion
We set out by analyzing the effect of face masks on the spread of
COVID-19 for a comparative case study of the city of Jena. Our
quasi-experimental control group approach using SCM shows that
the introduction of face masks on 6 April reduced the number of
newly registered COVID-19 cases over the next 20 d by 75% relative
to the synthetic control group. Comparing the daily growth rate in the
synthetic control group with the observed daily growth rate in Jena,
the latter shrinks by around 70% due to the introduction of face
masks. This is a sizeable effect. The introduction of mandatory face
masks and the associated signal to the local population to take the
risk of person-to-person transmissions seriously apparently helped
considerably in reducing the spread of COVID-19. Looking at av-
erage treatment effects for all other regions puts this result in some
perspective. The reduction in the daily growth rate of infections
amounts to 14% only. By contrast, when we focus on larger cities, we
find a reduction in the daily growth rate of infections by roughly 47%.
What would we reply if we were asked what the effect of intro-

ducing face masks would have been if they had been made man-
datory all over Germany? The answer depends, first, on which of
the percentage measures we found above is the most convincing
and, second, on the point in time when face masks are made
compulsory. The second aspect is definitely not only of academic
interest but would play a major role in the case of a second wave.##
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Fig. 4. Average treatment effects for the introduction of face masks with multiple treated units. The figure shows the average development of the cumulative
number of COVID-19 cases for treated units (defined as all regions that introduced face masks on or before 22 April), for their synthetic control groups and estimated
treatment effects. A plots the average number of cumulative COVID-19 cases in treated regions (black solid line) and synthetic controls (black dashed line) for the full
sample of German regions in the donor pool (see Method and Data for details on the specification of the donor pool). The horizontal axis plots the number of days
before and after the start of the treatment (mandatory introduction of face masks). The vertical dashed line (red color) indicates the start of the treatment period,
which is allowed to vary by treated regions. In B, the number of treated and the donor pool for control regions is limited to larger cities (kreisfreie Städte). C andD plot
the estimated average treatment effects, that is, average reduction in the cumulative number of COVID-19 cases (black solid lines) over time joint with 90% confidence
intervals (gray dashed lines) for the two samples. Confidence intervals are constructed on the basis of pseudo P values as shown in E and F for the first 20 d after the
start of the treatment. These (one-sided) P values are adjusted for the pretreatment match quality (seeMethod and Data for details). Inference has been conducted on
the basis of a randomly drawn sample of 1 million placebo averages. The red horizontal line in E and F indicates a threshold P value of 0.1.

§§This is perfectly in line with ref. 7 given the reduction in aerosols and droplets via using
masks.

##We implicitly assume that compliance to rules in Germany is sufficiently homogenous.
Some field observations in this respect would be very useful, especially across federal
states in Germany and worldwide. Ref. 19 reports that compliance for distancing rules
rises when masks are worn. As a first guess and assuming a compliance of 100% in our
treated regions, one would expect that a reduction in compliance by x% of the pop-
ulation leads to a reduction of the effects of masks by x%.
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We believe that the reduction in the daily growth rates of in-
fections between 47% and 70% is our best estimate of the effects
of face masks. Arguments in favor of the high 70% stress that
Jena introduced face masks before any other region did so. It
announced face masks as the first region in Germany while in our
posttreatment period hardly any other public health measures were
introduced or eased. Hence, it provides the most clear-cut quasi-
experimental setting for studying its effects. Second, as described in
Method and Data, Jena is a fairly representative region of Germany
in terms of COVID-19 cases. Third, the smaller treatment effects
observed in the multiple-treatment analysis may also result from
the fact that—by the time that other regions followed the example
of Jena—behavioral adjustments in Germany’s population had
already taken place. Wearing face masks gradually became more
common and more and more people started to adopt their usage
even when it was not yet required. The results for the subsample of
larger cities are, however, quantitatively similar to Jena.
Arguments for the lower 47% state that the stronger impact of

face masks on the infectious in Jena may thereby partly be driven
by a Hawthorn effect. The population in this pioneer region
might have reacted very strongly to the mandatory introduction
of face masks by taking the other imposed public health mea-
sures and hygiene rules (washing hands, limiting interactions,
staying at home more, etc.) more seriously.
Concerning the point in time (or better, the point in the epi-

demic cycle) when face masks become mandatory, all of our
estimates might actually be modest. The daily growth rates in the
number of infections when face masks were introduced in Jena
was around 2 to 3%. These are low growth rates compared to the
early days of the epidemic in Germany, where daily growth rates
lay above 50% (20). One might therefore conjecture that the ef-
fects might have been even greater if masks had been introduced
earlier.
This timing effect might also explain the difference between

Jena estimates and lower estimates for other regions. By the time
Jena introduced face masks on 6 April, the general trend in
development of COVID-19 cases was still relatively dynamic
across German regions. In mid-April, when other regions fol-
lowed the example of Jena and introduced face masks before the
general introduction at the federal state level, overall daily
growth rates were already lower.
We simultaneously stress the need for further complementary

analyses. First, Germany is only one specific country. Different
regulations, norms (which relate to compliance), or climatic
conditions might change the empirical picture for other coun-
tries. Second, we ignored the impact of the number of tests on
reported infections. While we do not believe that this matters for
Germany as rules for testing are homogenous across regions, this
might play a bigger role for international comparisons. Third, we
have ignored spatial dependencies in the epidemic diffusion of

COVID-19. This might also matter. Fourth, there are various
types of face masks. We cannot identify differential effects since
mask regulations in German regions do not require a certain
type. Finally, economic costs should be taken into account.
When we compare masks with other common measures,*** the
implied economic costs for community masks seem compara-
tively low. This applies to disposable masks and reusable non-
medical masks. Yet, the cost of information campaigns should be
taken into account. While a detailed cost–benefit analysis is
needed, we would expect that a comparison with other policy
actions would speak in favor of face masks. [See SI Appendix,
section E.3 for a brief introduction to the literature. We estimate
that costs (of households only) for face masks amount to 1.4 to
2.5% of disposable income.]

Method and Data
Variation in Timing. Six regions in Germany (municipal districts, equivalent to
the European Union nomenclature of territorial units for statistics, NUTS,
level 3 categorization) made face masks mandatory before their respective
federal states. They are displayed in Fig. 5. The figure also shows differences
across federal states in the timing of introducing mandatory face masks.

Statistical Method. We estimate treatment effects from introducing face
masks by means of the SCM for single andmultiple treated units. (All analyses
are undertaken in Stata. The corresponding files plus data are available in SI
Appendix.) The SCM has become increasingly popular for policy evaluations
that rely on comparative case studies. The intuition of SCM estimation can
briefly be described as follows (see ref. 2–5 and SI Appendix, section B for
more background).

First, the method can be applied to policy interventions (thereafter
treatment) which only target a small number of treated units (in our case, one
or a few regions). Treatment effects are identified by comparing the de-
velopment of outcomes in treated and control regions during the treatment
period. For causal inference, the proper selection and weighting of control
regions is crucial to credibly estimate what outcome would have been ob-
served in the treated region in the absence of the treatment. To establish this
counterfactual, the SCM approach constructs a synthetic control group as
weighted average of regions in the donor pool of controls. Weights for
individual control regions vary between 0 and 1, sum up to 1 over all control
regions, and are determined on the basis of a minimum distance approach.
The latter involves a set of predictor variables chosen by the researcher as to
closely match the outcome of the treated region prior to the treatment
(predictors used here are listed in SI Appendix, Table S4 and selected weights
for control regions are displayed in SI Appendix, Table S5).

Second, statistical significance of the estimated treatment effect is based
on permutation. The SCM estimates a series of placebo treatment effects for
all regions in the donor pool, that is, each region in the donor pool is treated

May 4April 27

April 20
Saxony

April 22
Saxony Anhalt

April 29
Schleswig Holstein, Berlin (sales shops)

April 24
Thuringia

20.04.
Main Kinzig Kreis,

Wolfsburg

April 25
Braunschweig

April 20April 13April 6

April 17
Ro�weil

April 14
Nordhausen

April 27
Saarland, Baden Wür�emberg, Rheinland Pala�ne, Bavaria, Lower

Saxony, Brandenburg, Bremen, Hamburg, Hessia, Mecklenburg Western
Pomerania, Northrhine Westphalia, Berlin (public transport)

April 6
Jena

Fig. 5. The timing of mandatory face mask wearing in German federal states (Top) and individual regions (Bottom). The figure shows the regional variation
in the introduction of face masks in public transport and shops over time. While text boxes above the timeline on the horizontal axis indicate the timing when
the wearing of face masks became compulsory in the respective federal states (NUTS1 level), text boxes below the timeline identify individual NUTS3 regions
that have anteceded the general introduction of face masks at the federal state level. The first NUTS3 region that introduced mandatory face masks in
Germany was Jena on 6 April. By 29 April face masks had become mandatory in all German regions. (See SI Appendix, section A.1 for more background.)

***Common measures can be grouped inter alia into closures (of, e.g., restaurants or
hotels, educational institutions or clubs, and leisure facilities), contact bans (for indi-
viduals, faith groups, or visits to hospitals or retirement homes), and contact rules
(social distancing or quarantines after traveling).
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as if it had been treated. The distribution of placebo effects is then compared
with the treatment effect for the treated region. If the magnitude of the
latter effect is large relative to the distribution of the placebo effects, the
treatment effect is considered not to be observed by chance, that is, it is
deemed to be significant.

Third, the effective use of SCM relies on contextual requirements: 1) A
donor pool of controls is available, that is, not all regions receive the
treatment during the period of the study; 2) predictor values of the treated
region are not extreme relative to those of controls, that is, the treated region
lies in the convex hull of control regions; 3) data are available for a sufficiently
long time horizon before and after the start of the treatment; 4) spillover
effects of the treatment on controls are absent; and 5) there are no early
anticipation effects. Implications of these requirements for our analysis are
discussed in SI Appendix, section B and we apply a series of robustness
tests to check if the requirements hold in our data settings (reported in
Robustness Checks).

Finally, as we also employ DiD estimation, we briefly touch upon the
relationship between these two approaches. Similar to SCM, the DiD ap-
proach estimates treatment effects by contrasting changes in outcomes
between a pretreatment and treatment period for treated and nontreated
(control) regions. An attractive feature of the DiD approach is its flexibility in
estimating dynamic treatment effects, that is, those that build up over time
potentially determined by (unobserved) interventions starting at different
time periods. (This is the reason why we employed DiD above.) By contrast,
DiD has its limits when only one or a few treated regions are available as
heteroscedastic errors might occur (see ref. 21). DiD estimation also relies
strongly on the validity of the parallel trends assumption: It requires that
treated and control regions would have followed parallel trajectories over
time if treatment had not occurred. Given the highly dynamic development
of regional COVID-19 cases and the likely presence of macroregional trends,
the validity of the common trend assumption is questionable in our data
settings. For SCM estimation, we do not need to impose this assumption as
the presence of common trends between treated and control regions is in
itself a favorable factor for finding an appropriate counterfactual trajectory
(2, 3, 22).

Data. We use the official German statistics on reported COVID-19 cases from
the Robert Koch Institute (23). We build a balanced panel for 401 NUTS level
3 regions and 105 d spanning the period from 28 January to 11 May 2020
(42,105 observations). We use the cumulative number of registered COVID-
19 cases in each district and the number of cumulative COVID-19 cases per
100,000 inhabitants as main outcome variables. We estimate overall effects
for these variables together with disaggregated effects by age groups
(persons aged 15 to 34 y, 35 to 59 y, and 60+ y). We also employ regional

data to inter alia identify control regions. SI Appendix, Table S4 shows
summary statistics.

Face masks are clearly not the only public health measures to mitigate the
spread of COVID-19. Identification of the face mask effect therefore needs to
take the timing of other public health measures into account. To this end, we
built a database for all public health measures in Jena and Thuringia and for
face masks in all other federal states. See SI Appendix, sections A.1 and A.2
for details. The database indicates that our results indeed capture the effects
of face masks and not of other public health measures.

Conceptional Background. To facilitate the interpretation of our findings, we
employ a standard SIR model with three states: susceptible, infectious, and
removed (see SI Appendix, section A.4 for more details.) Imagine we study
a region where face masks are not mandatory. The time path I(t) of in-
fections individuals in this (synthetic) control group is displayed in Fig. 6 as
Icontrol(t). The time path for Iever(t) in the control group is denoted by
Ievercontrol(t). Now consider the introduction of mandatory face masks at T (set

to 29.5 in Fig. 6).††† Mandatory masks reduce the infection rate (via a
parameter r in the SIR model). Given a (median) delay of Dm between
infection and reporting to authorities (estimated at 10.5 d in SI Appendix,
section A.3), we model this delay by effectively reducing r at T + Dm.
Hence, as of T + Dm, the number of infectious individuals falls faster, see
“face masks Imask(t),” and the number of individuals ever infected rises less
quickly, as visible when looking at Ievermask(t). Note the qualitative similarity

between the yellow and purple curve here and the corresponding curves
in Figs. 1A and 4 A and B.

Now imagine we want to quantify the effect of face masks. The model
suggests that the effect of facemasks can be described by the reduction in the
total number of individuals ever infected. As an example, consider time T +
Dm+δ, that is, δ days after face masks became effective. The difference
between the control region and the face-mask region is given by
Ievercontrol(T + Dm + δ) −   Ievermask(T + Dm + δ). Hence, the introduction of face masks

reduced the number of COVID-19 cases by

Fig. 6. Theoretical effects of face masks on the number of infectious individuals I(t) and on the accumulated number of infectious individuals Iever(t). The
horizontal axis plots time and the vertical axis the number of infectious individuals, both new cases (blue and red curves) and accumulated cases (yellow and
purple curves). The curves show time paths following from a standard SIR model. We let an intervention take place on day T = 29. After a delay of Dm days,
where Dm is the median of the delay between infection and reporting, the effect of the intervention is visible. Waiting 10 or 20 d then allows us to quantify
the effect of the intervention.

†††We chose T = 29.5 as this yields a date when masks show an effect in the data on
T + Dm = 40 where the epidemic is already beyond its peak in our simple model. This is
consistent with Jena, where the incidence had already been declining when face masks
became mandatory. Numerical solutions are computed in MATLAB. The code is avail-
able in SI Appendix.
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reduction  over   δ  days  =  
Ievercontrol(T + Dm + δ)  −   Ievermask(T + Dm + δ)
Ievercontrol(T + Dm + δ)  −   Ievercontrol(T + Dm) * 100%.

[1]

This equationproduces thenumberswe report toquantify theeffects of facemasks.
SI Appendix, section D.2 describes our measures based on daily growth rates.

Data Availability. Public health data have been deposited in FigShare (https://
doi.org/10.6084/m9.figshare.13065920). All study data are included in the
paper and SI Appendix.
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